

Certificate of Analysis

Characterisation methods are accredited according to

ISO 17025

Reference Material

Product name

Diisopropyl Hydrazine-1,2-dicarboxylate

O NH NO

Product code MM1219.09-0025

W1435688 **Appearance**

Lot number

CAS number 19740-72-8

white solid

Molecular weight

Melting point (DSC)

204.22

108 °C Long-term storage

Molecular formula C₈H₁₆N₂O₄

2 to 8 °C, dark

Assay¹ "as is" **99.0 %**

Uncertainty² Uncert

Intended Use: Use for identification and quantification. The assay is verified by a second testing method.

Date of shipment:

15 May 2025

Producer confirms that this reference material (RM) meets the specification detailed on this Certificate of Analysis for **two years** from the date of shipment, provided the substance is stored under the recommended conditions unopened in the original container.

Release by:	Date of Release:	.0	Product Release
Dr. Sabine Schröder	Luckenwalde, 22 Jan 2024	Soia	

¹ Calibration and verification were carried out using standards traceable to SI-units. The value is expressed on an "as is" basis.

² The uncertainty "U" is the expanded uncertainty of the testing method for the assigned value estimated in accordance with the Guide to the Expression of Uncertainty in Measurement (GUM). It corresponds to a level of confidence of about 95%. Coverage factor k = 2.

Product information

This RM is intended for laboratory use only and is not suitable for human or animal consumption. This RM conforms to the characteristics of a primary standard as described in the ICH Guidelines. The values quoted in this Certificate of Analysis are the producer's best estimate of the true values within the stated uncertainties and based on the techniques described in this Certificate of Analysis. The characterisation of this material was undertaken in accordance with the requirements of ISO/IEC 17025. The identity is verified by data from international scientific literature.

Storage and handling

Before usage of the RM, it should be allowed to warm to room temperature. No drying is required, as assigned values are already corrected for the content of water and other volatile materials.

Reference Material quality is controlled by regularly performed quality control tests (retests).

Health and safety information

All chemical reference materials should be considered potentially hazardous and should be used by qualified laboratory personnel only. Please refer to the Safety Data Sheet for detailed information about the nature of any hazard and appropriate precautions to be taken.

Further content

Assigned value

Purity

Identity

Revision table

Assigned value

Assay "as is":

98.95 %; U = 0.41 %

The assay "as is" is assessed by 100% method (mass balance) and is equivalent to the assay based on the notanhydrous and not-dried substance. The assay is verified by carbon titration of elemental analysis. The verified result lies inside our acceptance criteria, i.e. less than 1.0 % difference to assay assigning technique.

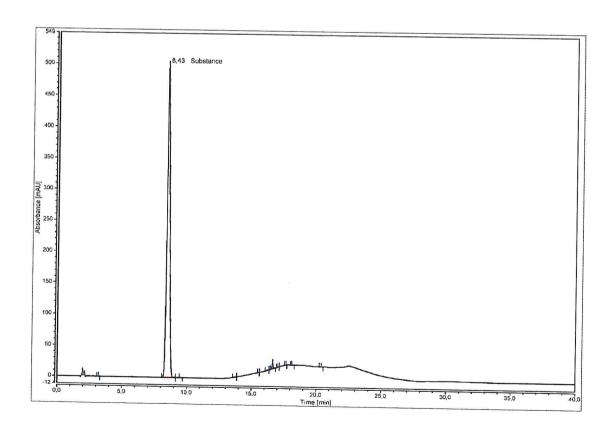
For quantitative applications, use the assay as a calculation value on the "as is basis". The uncertainty of the assay can be used for estimation/calculation of measurement uncertainty.

Method 1: Value assigning technique - 100%	o method
100% method (mass balance) with chromatographic purity by HPLC	
Result	98.95 %; U = 0.41 %

The calculation of the 100% method follows the formula:

Volatile contents are considered as absolute contributions and purity is considered as relative contribution. Inorganic residues are excluded by additional tests.

Method 2: Value verifying technique - carbon titration of elemental analysis		
Method	percentage carbon found in relation to percentage carbon as calculated for molecular formula	
Result (mass fraction, n = 3)	99.63 %	



Purity

Purity by High Performance Liquid Chromatography (HPLC)

HPLC conditions:	
Column	Hypersil Gold C18; 5 μm, 150 x 4.6 mm
Column temperature	40 °C
Detector	DAD, 210 nm
Injector	Auto 20 μl; 4.1548 mg/ml in Acetonitrile/Water 50/50 (v/v)
Flow rate	1.0 ml/min
Phase A	
Phase B	Acetonitrile, 0.1 % H ₃ PO ₄
Gradient program	0-10 min A/B 80/20 10-15 min A/B to 50/50 15-20 min A/B 50/50 20-25 min A/B to 80/20 25-40 min A/B 80/20 (v/v)

HPLC chromatogram and peak table

Area percent report - sorted by signal				
Pk#	Retention time	Area	Area %	
1	3.195	0.0243	0.02	
2	8.433	123.0578	99.06	
3	9.452	0.1229	0.10	
4	13.877	0.0379	0.03	
5	15.637	0.0079	0.01	
6	16.375	0.0264	0.02	
7	16.655	0.7681	0.62	
8	17.162	0.0238	0.02	
9	17.675	0.0367	0.03	
10	18.118	0.0391	0.03	
11	20.397	0.0749	0.06	
Totals		124.2198	100.00	

The content of the analyte was determined as ratio of the peak area of the analyte and the cumulative areas of the purities, added up to 100 %. System peaks were ignored in calculation.

Result (n = 6)	98.95 %; U = 0.40 %

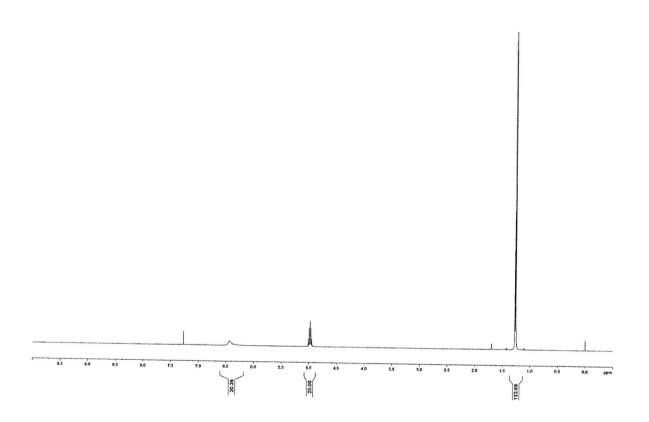
Volatile content

Water content			
Method	Karl Fischer titration		
Result (n = 3)	No significant amounts of water were detected (< 0.05 %).		

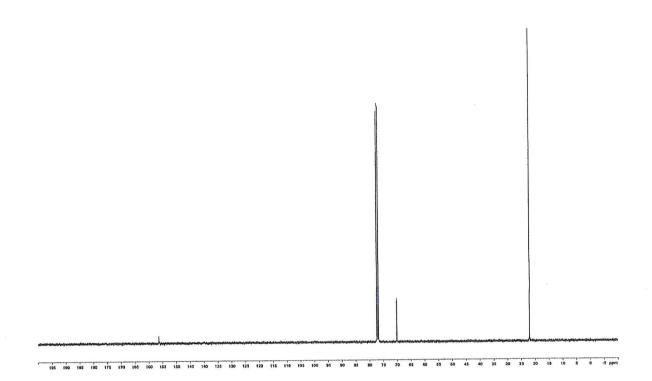
Residual solvents				
Method	GC headspace			
Result (n = 3)	No significant amounts of residual solvents were detected (< 0.05 %).			

Inorganic residues

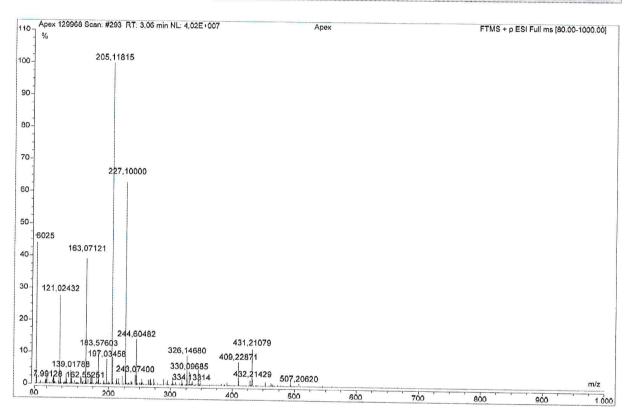
Method:	Elementary	anal	ysis


Inorganic residues can be excluded by elementary analysis (CHN).

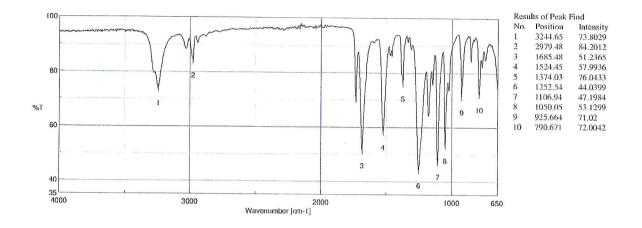
Identity


The identity is assessed by ISO/IEC 17025 accredited testing methods.

Method	Conditions	Result
¹ H-NMR	400 MHz, CDCl₃	Structure confirmed



Method	Conditions	Result
¹³ C-NMR	100 MHz, CDCl₃	Structure confirmed



Method	Conditions	Result
MS	3.5 kV ESI+; capillary temperature: 269 °C Theoretical value: 205.11828	Structure confirmed

Method	Conditions	Result Structure confirmed	
IR	Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy		

Revision table

Revision	Date	Reason for revision
00	22 Jan 2024	Release of the Certificate of Analysis – initial version
01	11 Mar 2024	Typo in the heading of the assigning technique corrected

Product warranties for the RM are set out in the terms and conditions of purchase.