

Via Curiel 34, 20067 Paullo (MI) - ITALY

Tel.: +39 02 90 62 60.1

Certificate of Analysis

Product CROMOLYN SODIUM C.A.S. n. 15826-37-6

Batch 014650 Formula C23H14Na2O11

Production date November 2019 M.W. 512.3
Expiration Date July 2024 T.S. 015.002

Analysis December 11 2019

Coa Number CA10.417

Clear and colourless Clear and colourless Clear and colourless NMT 0.100 an BY5 and NMO than RSII Conforms to standard Pass Conforms to standard Conforms to EuPh test NMT 0.35 % NMT 10.0 % NMT 10.0 % 98.0 / 101.0 % 98.0 / 101.0 %	COMPLIES 6.0 6.8 100.1 99.2
Clear and colourless Clear and colourless NMT 0.100 an BY5 and NMO than RSII Conforms to standard Pass Conforms to standard Conforms to EuPh test NMT 0.35 % NMT 10.0 % NMT 10.0 % 98.0 / 101.0 % 98.0 / 101.0 %	COMPLIES COMPLIES 0.039 COMPLIES COMPLIES COMPLIES COMPLIES COMPLIES COMPLIES COMPLIES COMPLIES A.0 6.8 100.1
Clear and colourless NMT 0.100 an BY5 and NMO than RSII Conforms to standard Pass Conforms to standard Conforms to EuPh test NMT 0.35 % NMT 10.0 % NMT 10.0 % 98.0 / 101.0 % 98.0 / 101.0 %	COMPLIES 0.039 COMPLIES COMPLIES COMPLIES COMPLIES COMPLIES COMPLIES 6.0 6.8 100.1
NMT 0.100 an BY5 and NMO than RSII Conforms to standard	0.039 COMPLIES COMPLIES COMPLIES COMPLIES COMPLIES COMPLIES 6.0 6.8 100.1
Conforms to standard Pass Conforms to standard Conforms to standard Conforms to EuPh test NMT 0.35 % NMT 10.0 % NMT 10.0 % 98.0 / 101.0 % 98.0 / 101.0 %	COMPLIES COMPLIES COMPLIES COMPLIES COMPLIES 6.0 6.8 100.1
Conforms to standard Pass Conforms to standard Conforms to EuPh test NMT 0.35 % NMT 10.0 % NMT 10.0 % 98.0 / 101.0 % 98.0 / 101.0 %	COMPLIES COMPLIES COMPLIES COMPLIES COMPLIES 6.0 6.8 100.1
Conforms to standard Pass Conforms to standard Conforms to EuPh test NMT 0.35 % NMT 10.0 % NMT 10.0 % 98.0 / 101.0 % 98.0 / 101.0 %	COMPLIES COMPLIES COMPLIES COMPLIES 6.0 6.8 100.1
Pass Conforms to standard Conforms to EuPh test NMT 0.35 % NMT 10.0 % NMT 10.0 % 98.0 / 101.0 % 98.0 / 101.0 %	COMPLIES COMPLIES COMPLIES COMPLIES 6.0 6.8 100.1
Conforms to standard Conforms to EuPh test NMT 0.35 % NMT 10.0 % NMT 10.0 % 98.0 / 101.0 % 98.0 / 101.0 %	COMPLIES COMPLIES COMPLIES 6.0 6.8 100.1
Conforms to EuPh test NMT 0.35 % NMT 10.0 % NMT 10.0 % 98.0 / 101.0 % 98.0 / 101.0 %	COMPLIES COMPLIES 6.0 6.8 100.1
NMT 0.35 % NMT 10.0 % NMT 10.0 % 98.0 / 101.0 % 98.0 / 101.0 %	COMPLIES 6.0 6.8 100.1
NMT 0.35 % NMT 10.0 % NMT 10.0 % 98.0 / 101.0 % 98.0 / 101.0 %	6.0 6.8 100.1
NMT 10.0 % NMT 10.0 % 98.0 / 101.0 % 98.0 / 101.0 % 0XY)	6.0 6.8 100.1
NMT 10.0 % NMT 10.0 % 98.0 / 101.0 % 98.0 / 101.0 % 0XY)	6.0 6.8 100.1
NMT 10.0 % 98.0 / 101.0 % 98.0 / 101.0 % 0xy)	6.8
98.0 / 101.0 % 98.0 / 101.0 % oxy)	100.1
98.0 / 101.0 % oxy)	
oxy)	99.2
<u> </u>	
	ND
E B, OSE B) NHI 0.100 6	ND
2T25TT 0 100 9	ND
	ND
	0.111
	0.069
	0.233
	6
NMT 50 ppm	ND
τ .	NMT 0.100 % Unidentified Impurity) NMT 0.150 % NMT 0.100 % NMT 0.500 % NMT 1000 ppm NMT 50 ppm

This batch has been manufactured, packaged and tested in accordance with EU GMP Guideline Volume 4 Part II (ICHQ7)

The product conforms to requirements of: USP $42/\text{EuPh}\ 10$

Approved by Qualified Person / Quality Director
Laura Bigini
01-07-2020 11:25

This Certificate of Analysis has been approved by the Qualified Person / Quality Director and produced automatically with validated electronic signature $\frac{1}{2}$